
Renormalization and fixed points in Hilbert space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 4851

(http://iopscience.iop.org/0305-4470/37/17/014)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 17:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 4851–4860 PII: S0305-4470(04)75313-5

Renormalization and fixed points in Hilbert space

Tarek Khalil and Jean Richert

Laboratoire de Physique Théorique, UMR 7085 CNRS/ULP, Université Louis Pasteur,
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Abstract
The energies of low-lying bound states of a microscopic quantum many-body
system of particles can be worked out in a reduced Hilbert space. We present
here and test a specific non-perturbative algorithm. We also show that real
exceptional points which may be present in the spectrum can be identified as
fixed points of coupling constants in the truncation procedure.

PACS numbers: 03.65.−w, 05.70.Fh, 24.10.Cn

1. Introduction

The construction of a rigorous microscopic quantum many-body theory able to describe bound
particle systems such as molecules, atoms, aggregates, atomic nuclei and condensed systems
has developed over a long period of time starting in the 1960s [1].

In practice, the explicit resolution of the problem necessitates the diagonalization of the
many-body Hamiltonian in Hilbert space which is spanned by a complete set of basis states,
in principle of infinite dimension, at least generally very large. In many cases the information
of interest is, however, restricted to the knowledge of a few energetically low-lying states
possessing collective properties which cannot be reproduced in the framework of quasi-
particle descriptions. Hence, it would be convenient to work in a finite truncated subspace of
the original Hilbert space. Many different procedures have been proposed and successfully
applied, in particular in the study of structure properties of nuclei, atoms, molecules and
condensed systems.

Rigorous projection methods lead to effective Hamiltonians which can in principle be
explicitly generated by means of perturbation techniques [1–5, 16]. Unfortunately there
exists no straightforward control on the convergence properties of the perturbation expansions
which are involved, especially not when the interaction between the particles is strong as it
is the case in atomic nuclei and strongly correlated systems such as quantum spin chains,
ladders and networks for instance. Many attempts have been made in order to overcome this
problem. Some authors developed cluster expansions, in particular Suzuki and Okamoto [7]
and Kümmel et al [8]. Perturbation expansion resummations have been proposed [9, 10].
Pragmatic phenomenological procedures have also been introduced [11, 12]. More recently
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effective 2-body interactions have been constructed in the framework of the nuclear many-
body problem by means of a non-perturbative renormalization technique which cuts off the
large momentum components of the interaction [13].

Perturbation expansions based on projection techniques [14, 15] diverge in specific but
frequently encountered situations, in practice when the interaction between the constituents
gets strong. This breakdown happens in the framework of the projection method when two
states belonging to different subspaces, the subspace of the states which enter the description
of the system and its complement to the total space, come arbitrarily close to or even cross
each other [16].

The present investigations develop an approach which follows in spirit former work
based on a renormalization concept [17–20]. We introduce a general and operational non-
perturbative method for the treatment of the bound state many-body problem which leads to
the generation of effective Hamiltonians in reduced spaces.

We first present the formal framework in which we develop the dimensional reduction
procedure. We then define the method designed for many-body quantum systems at
temperature T = 0 and test it on two models. Finally, we show the link which exists
in this framework between exceptional points and fixed points appearing for some specific
values of the interaction strength constants.

2. Formal framework

Consider a system with a fixed but arbitrary number of bound quantum objects (particles, spins)
in a Hilbert space H(N ) of dimension N governed by a Hamiltonian H(N)

(
g

(N)
1 , g

(N)
2 , . . . , g(N)

p

)
where

{
g

(N)
1 , g

(N)
2 , . . . , g(N)

p �→ g(N)
}

are a set of parameters (coupling constants) which

characterize H(N). The eigenvectors
∣∣�(N)

i (g(N))
〉{i = 1, . . . , N} of H(N) span the Hilbert

space and are the solutions of the Schrödinger equation

H(N)(g(N))
∣∣�(N)

i (g(N))
〉 = λi(g

(N))
∣∣�(N)

i (g(N))
〉
. (1)

The diagonalization of H(N) delivers both the eigenvalues {λi(g
(N)), i = 1, . . . , N} and

eigenvectors
{∣∣�(N)

i (g(N))
〉
, i = 1, . . . , N

}
in terms of a linear combination of orthogonal

basis states {|�i〉, i = 1, . . . , N}. Since dim H(N) = N is generally very large if not infinite
and the information needed reduces to a finite part of the spectrum, it makes sense to try
to restrict the space dimensions. If the relevant quantities of interest are for instance M
eigenvalues out of the set {λi(g

(N))}, generally but not necessarily the lowest energy states,
then one may define a new effective Hamiltonian H(M)(g(M)) such that

H(M)(g(M))
∣∣�(M)

i (g(M))
〉 = λi(g

(M))
∣∣�(M)

i (g(M))
〉

(2)

with the constraints

λi(g
(M)) = λi(g

(N)) (3)

for i = 1, . . . ,M . Equation (3) implies relations between the sets of coupling constants g(M)

and g(N)

g
(M)
k = fk

(
g

(N)
1 , g

(N)
2 , . . . , g(N)

p

)
(4)

with k = 1, . . . , p. The solution of these equations generates new coupling constants which
allow us to define a new Hamiltonian in the corresponding reduced space. Such an effective
Hamiltonian H(M)(g(M)) may not be rigorously derivable from H(N) or unique. It should be
constructed in such a way that it best preserves the eigenenergies and the properties of physical
observables.
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3. General space reduction procedure and renormalization algorithm for systems
at temperature T = 0

We develop here an explicit and general approach which allows us to implement the former
procedure. We start from the complete Hilbert space H(N ) in which the system is described by
the Hamiltonian H(N). Since we want to reduce the dimensions of the space but describe the
same physical system as in the original space, the Hamiltonian has to be changed and go over
to an effective operator. This can in principle be achieved by means of the renormalization
of quantities which characterize it, in practice for instance interaction strengths, coupling
parameters. The evolution of these quantities with the reduction of space is determined
by means of constraints which fix physical quantities such as energies or other physical
observables corresponding to those obtained in the complete space and (or) experimentally
known. In this way, the physical properties such as the energies of the low-energy part
of the spectrum can be determined in the reduced space and are hopefully close to those
which are generated in the complete space. In what follows, we consider a Hamiltonian with
one parameter so that one needs one constraint to fix its value at each step of the reduction
procedure. The quantity we consider to be fixed here is the ground state energy of the system.
Constraints on the energies of other states can be implemented.

Following the procedure sketched above we reduce the dimensions of the space by means
of a projection technique. Using the Feshbach formalism [14], we divide the Hilbert space
H(N) into two subspaces, PH(N) and QH(N). In the present case the dimensions of the
subspaces are chosen such that

dim PH(N) = N − 1 dim QH(N) = 1. (5)

In the projected subspace PH(N) the system with energy E is described by the effective
Hamiltonian [14, 15]

Heff(E) = PHP + PHQ(E − QHQ)−1QHP. (6)

The Hamiltonian H characterizes the system in the Hilbert space H(N). We suppose that H
depends on one parameter g and write it in the form

H = H0 + gH1 (7)

where H0 and H1 are Hamiltonian operators and g is a parameter (coupling constant) which
generically characterizes the strength of the interaction between the constituents. It takes
the value g(N) in H(N). We consider an arbitrary complete set of basis states which spans
H(N) {|�i〉, i = 1, . . . , N}. It may for instance be chosen as the eigenvectors of H0 with the
corresponding eigenvalues {εi, i = 1, . . . , N}.

The expression Heff(E) is generally the starting point of theories which rely on
perturbation expansions [1]. Here we proceed differently. We consider

P
∣∣�(N)

1

〉 =
N−1∑
i=1

a
(N)
1i (g(N))|�i〉 (8)

which is the projection on PH(N) of an eigenvector

∣∣�(N)
1

〉 =
N∑

i=1

a
(N)
1i (g(N))|�i〉 (9)

of H(N). If λ
(N)
1 is the eigenvalue corresponding to

∣∣�(N)
1

〉
we look for the solution of

Heff
(
λ

(N)
1

)
P

∣∣�(N)
1

〉 = λ
(N)
1 P

∣∣�(N)
1

〉
. (10)
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We consider P
∣∣�(N)

1

〉
to be the lowest energy eigenstate. In the one-dimensional subspace

QH(N) any state can in principle be chosen, for instance a state which lies in the high energy
sector of the spectrum of H0. We impose the lowest eigenvalue in the PH(N) subspace to be
the same as the one in the complete space

λ
(N−1)
1 = λ

(N)
1 . (11)

The expression of equation (10) is projected on 〈�1| which is the eigenvector of H0 with
lowest energy

〈�1|Heff
(
λ

(N)
1

)∣∣P�
(N)
1

〉 = λ
(N)
1 (g(N))a

(N)
11 (g(N)). (12)

Heff
(
E = λ

(N)
1

)
is a non-local energy-dependent operator which contains the local operator

H given by equation (7). In the expression, equation (6), of Heff which appears in
equation (12) we introduce H(N−1) = H0 + gH1 with g = g(N−1) acting in the projected
space H(N−1). Equation (12) fixes the coupling constant g(N−1). Indeed, if one develops the
left-hand member of the equation one gets

〈�1|Heff
(
λ

(N)
1

)∣∣P�
(N)
1

〉 = F(g(N−1)) (13)

where

F(g(N−1)) = H
(N−1)
1N + H

(N−1)
1N

(
λ

(N)
1 − H

(N−1)
NN

)−1
H

(N−1)
N1 (14)

with

H
(N−1)
ij = 〈�i |H(N−1)|�j 〉 (15)

and

H
(N−1)
1N = 〈�1|H(N−1)

∣∣P�
(N)
1

〉
. (16)

H
(N−1)
N1 is the matrix element as H

(N−1)
1N with 〈�1| replaced by 〈�N |.

Equation (12) can be worked out explicitly. The denominator in the second term
of Heff

(
λ

(N)
1

)
of equation (14) is a scalar quantity since dim QH(N) = 1. Developing

equation (13) leads to a relation which fixes a renormalized coupling constant g(N−1). One
gets explicitly

a(N−1)g(N−1)2
+ b(N−1)g(N−1) + c(N−1) = 0 (17)

where

a(N−1) = G1N − HNNF1N (18)

with

Hij = 〈�i |H1|�j 〉 (19)

b(N−1) = a
(N)
11 HNN

(
λ

(N)
1 − ε1

)
+ F1N

(
λ

(N)
1 − εN

)
(20)

c(N−1) = −a
(N)
11

(
λ

(N)
1 − ε1

)(
λ

(N)
1 − εN

)
(21)

with

F1N =
N−1∑
i=1

a
(N)
1i 〈�1|H1|�i〉 (22)

and

G1N = H1N

N−1∑
i=1

a
(N)
1i 〈�N |H1|�i〉. (23)
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The coefficients a(N−1), b(N−1) and c(N−1) in equation (17) depend on g(N) through the presence
of the coefficients a

(N)
1i , i = 1, . . . , N − 1. Since equation (17) is non-linear in g(N−1) and

has two solutions, g(N−1) is chosen as the one closest to g(N) by continuity. In H(N−1) the
Hamiltonian H(N−1) = H0 + g(N−1)H1 is aimed to act in this subspace and used to describe
the physical system therein.

The reduction process can be iterated step by step by projection from the space of
dimension N − 1 to N − 2 and further, keeping at each step λ1 equal to its initial value
λ

(N)
1 . One generates subsequently a succession of values of the strength parameter (coupling

constant) g(k) at each iteration. At each step the projected wavefunction
∣∣P�

(k)
1

〉
is obtained

from
∣∣�(k)

1

〉
by elimination of a state |�k〉.

The evolution of the coupling constant g can be worked out in the continuum limit. For
large N one goes over from (k, k − 1) to (x, x − dx). Writing equation (17) for two successive
steps k to k − 1 and k − 1 to k − 2, subtracting and going over to the continuum formulation
x leads to the flow equation

dg

dx
= − 1

2a(x)g(x) + b(x)

(
dc

dx
+

db

dx
g(x) +

da

dx
g(x)2

)
(24)

where a(x), b(x), c(x) and g(x) are the continuous extensions of the corresponding discrete
quantities which depend on the dimension x of the space. Equation (24) is a non-linear
differential equation which a priori can only be solved numerically.

In H(N−1) the corresponding Hamiltonian H(N−1) is a local operator which is aimed to
approximate non-local effects induced in Heff through the existence of the second term in
equation (6). This term induces a contribution to the renormalization of g(N) into g(N−1).
It raises the question of the correspondence between energy-dependent Heff and energy-
independent Hamiltonians H(k) and shows that the procedure is approximate since these
operators cannot be strictly equivalent. The correspondence between energy-dependent and
energy-independent operators has been considered recently [27].

In the next section we apply the procedure to different models in order to analyse and
discuss its practical efficiency.

4. Numerical applications

We aim to test the efficiency of the procedure which was described above by means of two
examples. Starting from a full space with dimension N and a fixed eigenvalue λ1 one reduces
the space dimensions as described in section 3. Different values of N are considered as shown
in tables 1 and 2.

4.1. Model 1

As a first application we consider a real symmetric tight-binding model which is generic for
the description of many strongly correlated systems. Following the notations introduced above
the Hamiltonian is degenerate and such that H0 = 0, diagonal elements 〈�i |H1|�i〉 = β and
non-diagonal ones 〈�i |H1|�i+1〉 = 〈�i |H1|�i−1〉 = γ which generate a coupling between
nearest-neighbour states. By essence, a reduction of Hilbert space by means of perturbation
expansions would be inefficient in this context, in particular when β and γ get large. Starting
with an initial Hilbert space dimension N we apply the renormalization procedure described
above to g starting from an initial value g(N). The evolution of the lowest eigenvalues and the
flow of g are shown in table 1 for g = 20 and different values of N.
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Table 1. Evolution of the coupling constant and the five lowest eigenvalues of the tight-binding
matrix described in the text. Here β = 1, γ = 0.5. N is the initial space dimension, λ1 is the
ground state energy, λ2–λ5 are the energies of the lowest excited states.

N n g λ1 λ2 λ3 λ4 λ5

50 50 20 0.038 0.15 0.34 0.60 0.94
20 3.73 0.04 0.165 0.37 0.65 0.99
10 1.11 0.045 0.176 0.38 0.65 0.95

100 100 20 0.010 0.038 0.087 0.15 0.24
50 5.3 0.010 0.04 0.09 0.16 0.25
10 0.28 0.011 0.045 0.1 0.166 0.24

200 200 20 0.0024 0.01 0.022 0.04 0.06
100 5.15 0.0025 0.01 0.022 0.04 0.06

10 0.07 0.003 0.01 0.024 0.042 0.06

Table 2. Evolution of the coupling constant and the five lowest eigenvalues of the generalized
tight-binding matrix described in the text. Here β = 1, γ = 0.5, δ = 0.5, N is the initial space
dimension, n is the dimension of the restricted spaces and g is the running coupling constant.

N n g λ1 λ2 λ3 λ4 λ5

50 50 20 −2.366 −2.360 −1.968 −1.942 −1.32
30 21.8 −2.35 −2.30 −1.26 −1.08 0.53
20 25.5 −2.27 −2.16 0.43 0.74 4.83

200 200 20 −2.491 −2.490 −2.464 −2.463 −2.42
70 20.48 −2.49 −2.485 −2.27 −2.26 −1.91
50 21.00 −2.485 −2.478 −2.067 −2.04 −1.38
20 26.80 −2.39 −2.27 0.45 0.78 5.08

500 500 20 −2.50 −2.50 −2.49 −2.49 −2.49
70 20.54 −2.495 −2.493 −2.28 −2.27 −1.92
50 21.07 −2.49 −2.48 −2.07 −2.04 −1.38
20 26.9 −2.39 −2.28 0.45 0.78 5.09

In order to quantify the quality of the spectrum we introduce the quantity

�
(N,n)
i = ∣∣1 − λ

(n)
i

/
λ

(N)
i

∣∣ (25)

where n stands for the size of the truncated space and i for increasing eigenenergies starting
from the ground state i = 1.

For N = 100 and n = 20 : �
(100,20)
i = 0.097, 0.092, 0.082, 0.068, 0.051, i = 1–5

respectively.
For N = 100 and n = 10 : �

(100,10)
i = 0.19, 0.16, 0.12, 0.07, 0.01, i = 1–5 respectively.

The results show that the elimination of states {|�i〉} which generate strong coupling
matrix elements with the states in the remaining space has a strong influence on the
renormalization of the Hamiltonian when the size of the reduced space gets small. For
fixed n, �

(N,n)
i remains practically the same for any N � 50.

One also observes that the coupling parameter g decreases systematically and rather
strongly with the dimensional decrease of space indicating that the coupling between the
remaining states gets systematically weaker.

As expected further calculations show that better the stability of the spectrum of low-lying
states the smaller the non-diagonal matrix elements.
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4.2. Model 2

As a second example we consider a generalization of the preceding Hamiltonian which
is generated by adding a coupling between next-nearest-neighbour states 〈�i |H1|�i+2〉 =
〈�i |H1|�i−2〉 = δ. One expects that the further coupling to next-nearest states increases
the correlation between states. The outcome of the diagonalization is shown in table 2 for
different values of the initial space dimensions N. The stability of the lowest eigenvalues
during the renormalisation procedure is preserved up to some minimal dimension nmin. The
ration nmin/N decreases with increasing N.

Using �
(N,n)
i as in the previous example one finds the same general trends. For N = 500

down to N = 50 and fixed n = 20,�
(N,n)
1 ∼ 0.04 and �

(N,n)
2 ∼ 0.09.

In the cases N = 200 and N = 500 the eigenvalues λ3, λ4, λ5 change and increase for
n � nmin with 70 < nmin < 100. Due to the strong coupling of the degenerate eigenstates of
H0 = 0, the renormalization of g cannot counteract the effect induced by the elimination of
states. The comparison of the behaviour of the eigenenergies between model 1 and model 2
show that the deviations are stronger the larger the number of non-diagonal matrix elements.
As a consequence the truncation process should be stopped at nmin when quantitative effects
are sizable. One may note that nmin gets independent of N for some Nmin as it is the case in
model 1.

The present numerical investigations concern systems in which the states {|�i〉, i =
1, . . . , N} are degenerate and strongly coupled to each other, either directly or indirectly. The
strong coupling is also seen through the fact that the ground state energy does not completely
stabilize when the initial dimension of the Hilbert space N increases from 50 to 500 as seen in
tables 1 and 2.

In practice and generally speaking a meaningful truncation algorithm may not necessarily
ground on the systematic elimination of those states whose diagonal matrix elements lie highest
in energy. The physical low-lying states are the states of interest. An importance sampling
sorting out those states which have the strongest components on the physical low-lying states
due to strong non-diagonal matrix elements should be kept in the final space of states.

5. Exceptional points and fixed points

We now show that in the present scheme, exceptional points which correspond to values
of g for which perturbation expansions diverge [16, 21] correspond to fixed points in the
renormalization process. The result is valid for any type of Hamiltonian which depends on a
coupling constant g.

It has been rigorously established that the eigenvalues λk(g) of an Hamiltonian H(g) =
H0 + gH1 are analytic functions of g with only algebraic singularities [16, 21, 22]. They get
singular at the so-called exceptional points g = ge which are first-order branch points in the
complex g-plane. Branch points appear if two (or more) eigenvalues get degenerate. This can
happen if g takes values such that Hkk = Hll where Hkk = 〈�k|H |�k〉, at a so-called level
crossing. As a consequence, if a level belonging to the PH subspace defined above crosses
a level lying in the complementary QH subspace, the perturbation development constructed
from Heff(E) diverges [16]. Exceptional points are defined as the solutions of [22]

f (λ(ge)) = det[H(ge) − λ(ge)I ] = 0 (26)

and

df (λ(ge))

dλ
|λ=λ(ge) = 0 (27)
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where f (λ(g)) is the secular determinant. It is now possible to show that exceptional points
can be identified as fixed points in the truncation procedure. If {λi(g)} are the set of eigenvalues
the secular equation can be written as

N∏
i=1

(λ − λi(g)) = 0. (28)

Consider λ = λp(g) which satisfies equations (26) and (28). Then equation (27) can only
be satisfied if there exists another eigenvalue λq(g) such that λp(g) = λq(g), hence if a
degeneracy appears in the spectrum. This is the case at an exceptional point.

Going back to the algorithm described above consider the case where some eigenvalue
λc, not necessarily the energy of the ground state, is either constrained to be fixed as above
or independent of g for any value of g and gets degenerate with some other eigenvalue
λ

(k)
i (g = ge) at some step k in the space reduction process. Since λc is constrained to

be constant

λ
(k)
i (ge) = λ

(l)
i (g′

e) (29)

which is realized in any projected subspace of size k and l containing states |�c〉 and |�i〉,
the eigenvectors corresponding to λc and λi . In the continuum limit for large values of N and
considering the subspaces of dimension x and x + dx one can write

dλc

dx
= 0 = dλi(x)

dx
. (30)

Consequently
dλi

dge

dge

dx
= 0. (31)

Due to the Wigner–Neumann avoided crossing rule the degeneracy of eigenvalues is generally
not fulfilled for real values of the coupling constant and the derivative of λi with respect
to g vanishes. There exist however specific situations, systems with symmetry properties
[16, 25] or infinitely large ones [23] for which degeneracy for real g can occur. In these cases
equation (31) is realized if

dge

dx
= 0 and

dλi

dge

�= 0. (32)

The second relation works if crossing takes place and ge is a fixed point in the sense of
renormalization theory as shown by the first relation.

Equation (32) establishes the connection between exceptional and fixed points in the
framework of the present approach. State degeneracy due to level crossing is indeed a signature
for the existence of phase transitions [24], perturbation expansions break down at these points.
The ground state wavefunction changes its properties when the (real) coupling constant g

crosses the exceptional point ge. There the eigenstates exchange the main components of their
projection on the set of basis states {|�i〉, i = 1, . . . , N}. It is worthwhile to emphasize that
this result is not restricted to the ground state, it is valid at any physical level crossing in which
one of the eigenvalues stays constant for any value of the coupling constant. We have tested
this property on several systems. A simple example is presented below.

6. Example

We consider a quantum spin 1/2 ladder with four sites (1, 2, 1′, 2′). The sites (1, 2) and (1′, 2′)
are located on parallel lines, on a ladder with two rungs (1, 1′), (2, 2′). Their antiferromagnetic
interaction is described by the Hamiltonian [26]

H = 2J1(S1S
′
1 + S2S

′
2 + α2(S1S2 + S ′

1S
′
2) + α3S

′
1S2 + α4S1S

′
2) (33)
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J2

1
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3 and 5
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1
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5

Figure 1. Evolution of the six eigenenergies of the Hamiltonian equation (33) with the strength
parameter J2 = α2J1, J1 = 1. The numbers in the figure label the different states. See discussion
in the text.

Table 3. Behaviour of the three lowest eigenenergies corresponding to the model described by the
quantum spin Hamiltonian given by equation (33) for α2 = α3 = α4 = 0.5 and g = 2J1 = 20.
See discussion in the text.

N n g λ1 λ2 λ3

6 6 20 −30 −10 −10
5 20 −30 −10 −10
4 20 −30 −10 −10
3 20 −24.14 −10 4.14

where J1 (here 2J1 = g in the former notation) is a positive coupling constant which will
be renormalized through the Hilbert space reduction procedure. The quantities α2, α3 and
α4 are positive quantities. In the present case H0 = 0 and the basis vectors are chosen as
|m1,m

′
1,m2,m

′
2〉 where mi = +(1/2) or −(1/2) is the projection of the spin 1/2 on the

quantization axis at site i. The subspace corresponding to Mtot = 0 where Mtot is the sum
of the spin projections contains six states. The diagonalization for fixed J1 shows that the
eigenstates cross each other at specific values of α2 as shown in figure 1.

As an illustration of the fixed point property discussed above we consider the crossing
point between the state labelled 2 and the degenerate states labelled 3 and 5 in figure 1. This
is an exceptional point. The numerical result shown in table 3 confirms that it is also a fixed
point of the renormalization procedure induced by space truncation. As expected, g = 2J1

does not change when the size of the Hilbert space is reduced from n = 6 to n = 3.
The three lowest eigenenergies are conserved up to n = 4. For n = 3 the ground state

and the second excited state energies are strongly affected. As already discussed above at the
end of section 4, this is due to the fact that the fourth basis vector is strongly coupled to the
first one, both being large components of the ground state wavefunction.

7. Conclusions

In summary, we developed a non-perturbative effective formalism of the bound state many-
body quantum problem based on a reduction process of the dimensions of the initial Hilbert
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space by means of a truncation procedure. This leads to the generation of effective
Hamiltonians which act in the reduced spaces. They are obtained through a step-by-
step reduction procedure and are characterized by renormalized coupling parameters. The
parameters are obtained by means of the implementation of constraints on the physical
spectrum in the successive truncated spaces, here the ground state energy of the system. We
presented and analysed the virtues and limitations of the approach on two examples describing
strongly coupled and highly degenerate systems which albeit simple are characteristic for
strongly correlated systems and for which perturbative expansions are meaningless. We
further showed the relationship which exists between exceptional points corresponding to
level crossings in the spectrum where perturbation expansions break down, and fixed points
of the coupling constants. These points characterize the so-called quantum phase transitions
at zero temperature. The formalism can be applied to other physical quantum systems such
as atoms, molecules, aggregates as well, whatever the explicit form of the Hamiltonian. It
can be extended to systems characterized by several coupling constants and systems at finite
temperature. Effective operators acting in reduced space can be worked out. We shall present
these developments in the forthcoming work.
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